Input |
---|
x^3 + 3 x^2 – 4 x – 12 |
Polynomial discriminant |
Delta = 400 |
Derivative |
d/dx(x^3 + 3 x^2 – 4 x – 12) = 3 x^2 + 6 x – 4 |
Indefinite integral |
integral (-12 – 4 x + 3 x^2 + x^3) dx = x^4/4 + x^3 – 2 x^2 – 12 x + constant |
Local maximum |
max{x^3 + 3 x^2 – 4 x – 12} = (14 sqrt(7/3))/3 – 6 at x = -1 – sqrt(7/3) |
Local minimum |
min{x^3 + 3 x^2 – 4 x – 12} = -2/9 (27 + 7 sqrt(21)) at x = sqrt(7/3) – 1 |
Definite integral area below the axis between the smallest and largest real roots |
integral_(-3)^2 (-12 – 4 x + 3 x^2 + x^3) theta(12 + 4 x – 3 x^2 – x^3) dx = -32 |
Definite integral area above the axis between the smallest and largest real roots |
integral_(-3)^2 (-12 – 4 x + 3 x^2 + x^3) theta(-12 – 4 x + 3 x^2 + x^3) dx = 3/4 = 0.75 |