Input |
---|
x^2 – 2 |
Geometric figure |
parabola |
Alternate form |
-(sqrt(2) – x) (x + sqrt(2)) |
Polynomial discriminant |
Delta = 8 |
Derivative |
d/dx(x^2 – 2) = 2 x |
Indefinite integral |
integral (-2 + x^2) dx = x^3/3 – 2 x + constant |
Global minimum |
min{x^2 – 2} = -2 at x = 0 |
Definite integral |
integral_(-sqrt(2))^(sqrt(2)) (-2 + x^2) dx = -(8 sqrt(2))/3~~-3.77124 |
Definite integral area below the axis between the smallest and largest real roots |
integral_(-sqrt(2))^(sqrt(2)) (-2 + x^2) theta(2 – x^2) dx = -(8 sqrt(2))/3~~-3.77124 |