Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Continue Reading How Do I Factor Polynomials
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation MonomialList[factor | 4] Result {2^2}
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation roots 1 – 5 x + x^3 = 0
Input interpretation complete the square | 28 + 10 x + x^2 Result (x + 5)^2 + 3 Geometric figure parabola Polynomial discriminant Delta = -12 Derivative d/dx((x + 5)^2 + 3) = 2 (x + 5) Indefinite integral integral (3 + (5 + x)^2) dx = x^3/3 + 5 x^2 + 28 x + […]
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation combinations | length | 3 Number of distinct combinations of 3 objects 8 Combinations of {1, 2, 3} {} | {1} | {2} | {3} | {1, 2} | {1, 3} | {2, 3} | {1, 2, 3} (total: 8)
Input interpretation combinations | length | 4 Number of distinct combinations of 4 objects 16 Combinations of {1, 2, 3, 4} {} | {1} | {2} | {3} | {4} | {1, 2} | {1, 3} | {1, 4} | {2, 3} | {2, 4} | {3, 4} | {1, 2, 3} | {1, 2, […]