Algebra

H=1/2Gt^2

Input interpretation H = 1/(2 Gt^2 (metric gigatons squared)) Result H = 0.5/Gt^2 (per metric gigatons squared)

Algebra

H=-16T^2+64T

Input H = -16 T^2 + 64 T Geometric figure parabola Global maximum max{-16 T^2 + 64 T} = 64 at T = 2

Algebra

Z=9-y^2

Input z = 9 – y^2 Geometric figure parabola Derivative (d)/(dy)(9 – y^2) = -2 y Global maximum max{9 – y^2} = 9 at y = 0

Algebra

Z^2 = x^2 + y^2

Input z^2 = x^2 + y^2 Geometric figure infinite cone Alternate form -x^2 – y^2 + z^2 = 0

Algebra

Z=1+x+y

Input z = 1 + x + y Geometric figure plane Alternate form -x – y + z – 1 = 0 Real root y = -x – 1 Root y = -x – 1 Derivative (d)/(dx)(1 + x + y) = 1

Algebra

Y-y1=m(x-x1)

Input y – y1 = m(x – x1) Solution y1 = y – m(x – x1) Solution for the variable y y = m(x – x1) + y1

Algebra

Y2 = x2 + 2z2

Input y^2 = x^2 + 2 z^2 Geometric figure infinite elliptic cone

Algebra

Y=-x-3

Input y = -x – 3 Geometric figure line Alternate form x + y + 3 = 0 Root x = -3 Derivative (d)/(dx)(-x – 3) = -1

Algebra

Y=x3

Input y = x^3 Alternate form y – x^3 = 0 Root x = 0 Derivative (d)/(dx)(x^3) = 3 x^2

Algebra

Y=x+4 slope

Input interpretation plane curve | Cartesian equation y = x + 4 | slope Result 1 Geometric figure line Properties of line x-intercept | -4 y-intercept | 4 slope | 1